Loading [MathJax]/extensions/TeX/AMSsymbols.js

Tuesday, April 29, 2014

Webcam image processing

This script acquires a digital camera image from a Logitech webcam and processes it. I have been using it for online monitoring of an atomic hydrogen beam on a beam-dump quartz plate. To get repeatable images, it is helpful to set the webcam's gain and exposure.


# Display webcam image from beamline monitor
# version 3, 2014-04-25
# Amar
import numpy as np
import cv2
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.figure import Figure
import matplotlib.gridspec as gridspec
class Camera:
def __init__(self,channel=0):
self.capture = cv2.VideoCapture(channel)
self.success,self.image = self.capture.read()
print "Beginning acquisition ...",
def acquire(self):
# Acquire image
self.success,self.image = self.capture.read()
print ".",
def close(self):
if self.capture.isOpened(): self.capture.release()
print "released camera"
camera = Camera()
camera.capture.set(15,-3)
camera.capture.set(16,0.01)
"""
Camera parameters:
--------------------
1 CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
2 CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
3 CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file
4 CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
5 CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
6 CV_CAP_PROP_FPS Frame rate.
7 CV_CAP_PROP_FOURCC 4-character code of codec.
8 CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
9 CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
10 CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
11 CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
12 CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
13 CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
14 CV_CAP_PROP_HUE Hue of the image (only for cameras).
15 CV_CAP_PROP_GAIN Gain of the image (only for cameras).
16 CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
17 CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
18 CV_CAP_PROP_WHITE_BALANCE Currently unsupported
19 CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
"""
# Setting up the plot
fig = plt.figure()
aspectRatio = 6
fig.canvas.set_window_title('beam camera')
gs = gridspec.GridSpec(aspectRatio,aspectRatio)
ax1 = plt.subplot(gs[0,:-1])
ax2 = plt.subplot(gs[1:,:-1])
ax3 = plt.subplot(gs[1:,-1])
plt.subplots_adjust(left=0.10,bottom=0.10,wspace=0.02, hspace=0.02)
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)
ax3.xaxis.set_visible(False)
ax3.yaxis.set_visible(False)
ax1.set_xlim(0,640)
ax3.set_ylim(480,0)
### Initial plot ###
image = 0.5*camera.image[:,:,0] + 0.5*camera.image[:,:,1]
oldImage = camera.image
i,j = np.unravel_index(image.argmax(), image.shape)
print i,j
x = image[i] #x slice along maximum
y = image.T[j] #y slice along maximum
xslice, = ax1.plot(range(640),x,'b',linewidth=3,alpha=0.7)
im = ax2.imshow(image)
yslice, = ax3.plot(y[::-1],range(480,0,-1),'b',linewidth=3,alpha=0.7)
text_template = 'x0 = %i, y0 = %i'
text = ax2.text(300,40,text_template%(j,i),family='monospace',fontsize=16,weight='heavy',color='white')
#### Animation routine ###
def updatefig(*args):
camera.acquire()
image = 0.5*camera.image[:,:,0] + 0.5*camera.image[:,:,1]
if camera.success:
image = 0.5*camera.image[:,:,0] + 0.5*camera.image[:,:,1]
oldImage = camera.image
i,j = np.unravel_index(image.argmax(), image.shape)
print i,j
x = image[i] #x slice along maximum
y = image.T[j] #y slice along maximum
im.set_array(image)
xslice.set_ydata(x)
ax1.set_ylim(0,x.max())
yslice.set_xdata(y[::-1])
ax3.set_xlim(0,y.max())
text.set_text(text_template%(j,i))
else: print "error"
return (im,) + (xslice,) + (yslice,) + (text,)
def init(): #Init only required for blitting to give a clean slate.
im.set_array(np.zeros(oldImage.shape))
xslice.set_ydata(np.zeros((640,)))
yslice.set_xdata(np.zeros((480,)))
text.set_text("")
return (im,) + (xslice,) + (yslice,) + (text,)
ani = animation.FuncAnimation(fig, updatefig, init_func=init, interval=80, blit=True)
plt.ioff()
plt.show()
camera.close()
view raw beamCamera.py hosted with ❤ by GitHub

Wednesday, April 16, 2014

Oscillator animation

An animated simple harmonic oscillator, integrated using the Verlet algorithm. You can see that the Verlet algorithm conserves energy, but only in an average sense.



# Animation of harmonic oscillator, with Verlet integration
from __future__ import division
import numpy as np
from numpy import sin, cos
from scipy.constants import c,e,h,hbar,u,pi
import matplotlib.animation as animation
delta = 1e-2 # spatial discretization
x = np.arange(-2,2,delta)
fig, ax = plt.subplots()
# ***** ANIMATION ***********
def V(x): return 0.5*x**2 # m=1, omega=1
def a(x,d=delta): return -( V(x+d) - V(x) )/d
def energy(x,v): return 0.5*v**2 + V(x)
line, = ax.plot(x,V(x),lw=2)
x0,v0 = np.random.uniform(-1,1,size=2)
blob, = ax.plot(x0,V(x0),'ro',ms=16)
xi,vi = x0,v0
text_template = 'energy = %.2g'
text = ax.text(0.25,0.5,text_template%(energy(x0,v0)), transform=ax.transAxes, family='monospace',fontsize=20,weight='heavy')
def animate(i,h=1e-1):
global xi, vi, a
t = i*h
## Verlet algorithm
xold = xi
xi += vi*h + 0.5*a(xi)*h**2
vi += 0.5*( a(xold) + a(xi) )*h
blob.set_xdata( xi )
blob.set_ydata( V(xi) ) # update the data
text.set_text( text_template%(energy(xi,vi)) )
return (blob,) + (text,)
def init(): #Init only required for blitting to give a clean slate.
blob.set_ydata(np.ma.array(x, mask=True))
text.set_text(" ")
return (blob,) + (text,)
ani = animation.FuncAnimation(fig, animate, range(1000), init_func=init,
interval=0.2, blit=True)
plt.show()

Thursday, April 3, 2014

Bringing fourier transforms to life

This script animates the reconstruction of a random ellipse from its fourier coefficients. It is a lot of fun to watch the reconstruction, especially for large aspect ratio ellipses.



# Fourier reconstruction of random ellipse
# Amar Vutha
# 2014-04-03
import pylab as plt
import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# Generate random ellipse
t = np.arange(0,2*pi,1e-4)
r = np.zeros(len(t))
a,b = np.random.random(), np.random.random()
theta = t.copy()
r = a*b/np.sqrt( ( a*np.sin(theta) )**2 + ( b*np.cos(theta) )**2 )
fig = plt.figure()
ax = plt.subplot(111,polar=True)
ax.set_rlim(0,1)
ax.plot(theta,r,'r--',lw=3,alpha=0.5)
line, = ax.plot(theta,r,lw=2)
linebg, = ax.plot(theta,np.ones(len(theta)),'g--',lw=3,alpha=0.2)
### Fourier transform #####
phi = t.copy()
Nmax = 20
A,B = [],[]
dp = phi[1] - phi[0]
A_DC = np.sum(r) * dp/(2*pi)
A,B = np.zeros( (Nmax) ), np.zeros( (Nmax) )
for n in range(1,Nmax):
A[n] = np.sum(r*np.cos(n*phi)) * dp/pi
B[n] = np.sum(r*np.sin(n*phi)) * dp/pi
### Reconstruction ######
def reconstruct(M):
R = A_DC
for m in range(1,M):
R += A[m]* np.cos(m*phi) + B[m]* np.sin(m*phi)
return R
def animate(i):
line.set_ydata(reconstruct(i)) # update the data
linebg.set_ydata(np.cos(i*theta)) # shows the shape corresponding to the fourier coefficient
return (line,) + (linebg,)
#Init only required for blitting to give a clean slate.
def init():
line.set_ydata(np.ma.array(phi, mask=True))
linebg.set_ydata(np.ma.array(phi, mask=True))
return (line,) + (linebg,)
ani = animation.FuncAnimation(fig, animate, np.arange(1, Nmax), init_func=init,
interval=500, blit=True)
plt.show()