This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.random import random | |
from scipy import interpolate | |
import matplotlib.pyplot as plt | |
import cProfile | |
def f(x): | |
# does not need to be normalized | |
return np.exp(-x**2) * np.cos(3*x)**2 * (x-1)**4/np.cosh(1*x) | |
def sample(g): | |
x = np.linspace(-5,5,1e5) | |
y = g(x) # probability density function, pdf | |
cdf_y = np.cumsum(y) # cumulative distribution function, cdf | |
cdf_y = cdf_y/cdf_y.max() # takes care of normalizing cdf to 1.0 | |
inverse_cdf = interpolate.interp1d(cdf_y,x) # this is a function | |
return inverse_cdf | |
def return_samples(N=1e6): | |
# let's generate some samples according to the chosen pdf, f(x) | |
uniform_samples = random(int(N)) | |
required_samples = sample(f)(uniform_samples) | |
return required_samples | |
cProfile.run('return_samples()') | |
## plot | |
x = np.linspace(-3,3,1e4) | |
fig,ax = plt.subplots() | |
ax.set_xlabel('x') | |
ax.set_ylabel('probability density') | |
ax.plot(x,f(x)/np.sum(f(x)*(x[1]-x[0])) ) | |
ax.hist(return_samples(1e6),bins='auto',normed=True,range=(x.min(),x.max())) | |
plt.show() |