Processing math: 100%

Monday, August 20, 2018

Fast inverse transform sampling for an arbitrary probability distribution

This is a fast Python implementation of Inverse Transform Sampling for an arbitrary probability distribution. Generating 106 random numbers with this crazy probability density function takes ~150 ms on a i5-3320M CPU @ 2.6 GHz, most of it from scipy.interpolate.interp1d.
import numpy as np
from numpy.random import random
from scipy import interpolate
import matplotlib.pyplot as plt
import cProfile
def f(x):
# does not need to be normalized
return np.exp(-x**2) * np.cos(3*x)**2 * (x-1)**4/np.cosh(1*x)
def sample(g):
x = np.linspace(-5,5,1e5)
y = g(x) # probability density function, pdf
cdf_y = np.cumsum(y) # cumulative distribution function, cdf
cdf_y = cdf_y/cdf_y.max() # takes care of normalizing cdf to 1.0
inverse_cdf = interpolate.interp1d(cdf_y,x) # this is a function
return inverse_cdf
def return_samples(N=1e6):
# let's generate some samples according to the chosen pdf, f(x)
uniform_samples = random(int(N))
required_samples = sample(f)(uniform_samples)
return required_samples
cProfile.run('return_samples()')
## plot
x = np.linspace(-3,3,1e4)
fig,ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('probability density')
ax.plot(x,f(x)/np.sum(f(x)*(x[1]-x[0])) )
ax.hist(return_samples(1e6),bins='auto',normed=True,range=(x.min(),x.max()))
plt.show()

Thursday, July 30, 2015

Animated stripchart

This script creates a moving stripchart-style plot of a data stream. Change num_points to increase the length of the section that gets plotted. (TODO: put in a matplotlib slider widget for num_points.)
# Monitor and plot
from __future__ import division, print_function
import numpy as np
from numpy import sin, cos, random
from scipy.constants import c,e,h,hbar,u,pi
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import time
def return_values():
time.sleep(0.2) # delay for 200 ms
# replace the following line with a function that returns data from the labjack
return np.random.uniform()
# Plot and animate
t0 = time.time()
t = []
t.append(time.time()-t0)
y = []
y.append(return_values())
fig, ax = plt.subplots()
t0 = time.time()
num_points = 30 # length of trace to plot
line, = ax.plot(t[-num_points:],y[-num_points:],lw=2)
text_template = 'y-value = %.2g'
text = ax.text(0.15,0.15,text_template%(y[-1]), transform=ax.transAxes, family='monospace',fontsize=20,weight='heavy')
def animate(i):
# add new points to time and y-value arrays
t.append(time.time()-t0)
y.append(return_values())
# rescale axes to keep moving
ax.set_xlim(t[-num_points:][0],t[-1])
avg = np.average(y[-num_points:])
variation = max(y[-num_points:]) - min(y[-num_points:])
ax.set_ylim(avg - 1.2*variation/2, avg + 1.2*variation/2)
ax.figure.canvas.draw() # this is necessary, to redraw the axes
# refresh line and text
line.set_xdata( t[-num_points:] )
line.set_ydata( y[-num_points:] )
text.set_text( text_template%(y[-1]) )
return line, text
def init(): #Init only required for blitting to give a clean slate.
line.set_ydata(np.ma.array(t[-num_points:], mask=True))
text.set_text(" ")
return line, text
ani = animation.FuncAnimation(fig, animate, init_func=init,
interval=0.6, blit=False) # blit has to be False, to avoid ugly artefacts on the text
plt.show()

Tuesday, July 22, 2014

Linear least squares phase estimation of a sine wave

This snippet extracts the phase out of a noisy sinusoidal signal. The algorithm is a clever linear least squares (LLS) scheme, courtesy of the IEEE waveform measurement standard for characterizing ADCs and DACs. It works in spite of the fact that the sine wave is non-linear -- which just underscores the point that the linear bit of LLS is linearity in the parameters, not the fit function. It works quite a bit faster than the Levenberg-Marquardt nonlinear least squares routine.

 
# Least squares fitting
# IEEE algorithm version for known frequency
from __future__ import division
import numpy as np
from numpy import pi
from numpy import fft
from numpy import linalg as lg
import pylab as plt
import matplotlib.gridspec as gridspec
## 3-parameter sine fit, with linear least squares
dt = 1e-2
T = np.random.uniform(3,15) # record length
A = 1.0 # sine amplitude
noise_amplitude = np.random.uniform(0,20)
f = np.random.uniform(50,80) # sine frequency
N = int(T/dt) + 1
t = np.arange(0,T,dt)
phase = np.random.uniform(0,2*pi)
noise = np.random.normal(0,noise_amplitude,N) # noise vector
y = A * np.sin(2*pi*f*t + phase) + noise
y = np.matrix(y).T
D = np.matrix( [np.cos(2*pi*f*t), np.sin(2*pi*f*t), np.ones(N)] ).T
x_opt = lg.inv(D.T * D) * D.T * y # parameter vector
a,b,c = x_opt # = A * np.sin(phase), A * np.cos(phase), np.average(y)
residuals = y - D * x_opt
S = lg.norm(residuals)**2
x_cov = np.asscalar( S/(N - len(x_opt)) ) * lg.inv(D.T * D) # covariance matrix
phi = np.arctan2(a,b)%pi # phase estimate
delta_a, delta_b = np.sqrt(x_cov[0,0]), np.sqrt(x_cov[1,1])
delta_phi = np.cos(phi)**2 * np.abs(a/b) * np.sqrt( (delta_a/a)**2 + (delta_b/b)**2 )
def corr(x,y): return np.dot(x,y)/np.sqrt( np.dot(x,x) * np.dot(y,y) )
def correlation_length(x):
l = 0
while abs(corr( x,np.roll(x,l) )) > 0.5: l = l+1
return l
N_eff = N/correlation_length(noise)
delta_phi_estimated = np.sqrt(2) * np.std(residuals)/np.sqrt( (a**2 + b**2) * N_eff )
phase_error = phi%pi - phase%pi
print "SNR = ", round( lg.norm(x_opt[:-1])/np.std(residuals) ,3)
print
print "phase error = ",round(phase_error,3), "("+`round(delta_phi,3)`+")", "(fit)"
print "predicted uncertainty = ", "("+`round(delta_phi_estimated,3)`+")"
residuals, y, y_reconstructed = np.array(residuals), np.array(y), np.array( D * x_opt )
## Plotting
fig = plt.figure()
gs = gridspec.GridSpec(3,6)
ax1 = plt.subplot(gs[0:2,:-1])
ax2 = plt.subplot(gs[2:,:-1])
ax3 = plt.subplot(gs[2:,-1])
ax3.xaxis.set_visible(False)
ax3.yaxis.set_visible(False)
ax1.plot(t,y,'b',lw=2)
ax1.plot(t,y_reconstructed,'g',lw=2)
ax1.set_ylabel("y")
ax1.grid(axis='y')
ax2.plot(t,residuals, 'g')
ax2.set_ylabel("residuals")
ax2.set_xlabel("Time, t [s]")
n, bins, patches = ax3.hist(residuals, 50, normed=True, \
orientation='horizontal', facecolor='green', \
histtype='stepfilled')
plt.show()

Monday, July 21, 2014

Exit fluff. Enter IEP !

After dinking around with getting iPython notebooks to work without trouble on my linux laptop, I've finally hit the limit of my patience for the sluggishness and foppish foofery of iPython notebooks. I tried to revert to my old gedit + Dreampie combination, but having been spoiled by executing code inline, I looked around for other alternatives. And found an amazing option: IEP 

The features I like include
  • syntax highlighting and the simple, uncluttered interface
  • organized file structure for projects
  • easy integration with matplotlib (and not having to switch back and forth with %pylab tags to make code run on different machines)
  • being able to run selected code snippets with just Alt + Enter !
One word for it. Liberating! 

Monday, June 16, 2014

Arduino gets its Due

After a few years away from Arduinos, I started thinking about them a few days ago as a possible solution for a laser feedback controller project. In the past, I have been unimpressed with the Arduino's ADC, and with its outputs: either PWMs that need to be post-filtered, or klugey DAC chips. And so I was delighted to see the specs of the new(ish) Arduino Due: 12 bit analog ADCs sampling (as fast as ~50 kHz), and real 12 bit DACs right on the board. Finally, something with enough juice to do useful things in the lab!

To celebrate, here's a simple arbitrary waveform generator, taking advantage of the Due Timer library.

// Arduino Due simple synthesizer
// arbitrary waveforms on DAC0
// using Timer library to run off internal clock
#include <DueTimer.h>
int led = 13;
int sensorPin = A0;
int triggerPin = 4;
int outputValue = 0;
int s = 0;
long samplePeriod = 5; // us. Needs to be >= 4 us
int *waveform;
int sine20[] = {2047, 2680, 3250, 3703, 3994, 4095, 3994, 3703, 3250, 2680, 2047, 1414, 844, 391, 100, 0, 100, 391, 844, 1414, -1};
int cosine100[] = {4095, 4090, 4078, 4058, 4030, 3994, 3951, 3900, 3841, 3776, 3703, 3625, 3540, 3449, 3352, 3250, 3144, 3033, 2919, 2801, 2680, 2556, 2431, 2304, 2176, 2047, 1918, 1790, 1663, 1538, 1414, 1293, 1175, 1061, 950, 844, 742, 645, 554, 469, 391, 318, 253, 194, 143, 100, 64, 36, 16, 4, 0, 4, 16, 36, 64, 100, 143, 194, 253, 318, 391, 469, 554, 645, 742, 844, 950, 1061, 1175, 1293, 1414, 1538, 1663, 1790, 1918, 2047, 2176, 2304, 2431, 2556, 2680, 2801, 2919, 3033, 3144, 3250, 3352, 3449, 3540, 3625, 3703, 3776, 3841, 3900, 3951, 3994, 4030, 4058, 4078, 4090,-1};
int sine100[] = {2047, 2176, 2304, 2431, 2556, 2680, 2801, 2919, 3033, 3144, 3250, 3352, 3449, 3540, 3625, 3703, 3776, 3841, 3900, 3951, 3994, 4030, 4058, 4078, 4090, 4095, 4090, 4078, 4058, 4030, 3994, 3951, 3900, 3841, 3776, 3703, 3625, 3540, 3449, 3352, 3250, 3144, 3033, 2919, 2801, 2680, 2556, 2431, 2304, 2176, 2047, 1918, 1790, 1663, 1538, 1414, 1293, 1175, 1061, 950, 844, 742, 645, 554, 469, 391, 318, 253, 194, 143, 100, 64, 36, 16, 4, 0, 4, 16, 36, 64, 100, 143, 194, 253, 318, 391, 469, 554, 645, 742, 844, 950, 1061, 1175, 1293, 1414, 1538, 1663, 1790, 1918,-1};
int square[] = {0,4095,-1};
int sawtooth512[] = {0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512, 520, 528, 536, 544, 552, 560, 568, 576, 584, 592, 600, 608, 616, 624, 632, 640, 648, 656, 664, 672, 680, 688, 696, 704, 712, 720, 728, 736, 744, 752, 760, 768, 776, 784, 792, 800, 808, 816, 824, 832, 840, 848, 856, 864, 872, 880, 888, 896, 904, 912, 920, 928, 936, 944, 952, 960, 968, 976, 984, 992, 1000, 1008, 1016, 1024, 1032, 1040, 1048, 1056, 1064, 1072, 1080, 1088, 1096, 1104, 1112, 1120, 1128, 1136, 1144, 1152, 1160, 1168, 1176, 1184, 1192, 1200, 1208, 1216, 1224, 1232, 1240, 1248, 1256, 1264, 1272, 1280, 1288, 1296, 1304, 1312, 1320, 1328, 1336, 1344, 1352, 1360, 1368, 1376, 1384, 1392, 1400, 1408, 1416, 1424, 1432, 1440, 1448, 1456, 1464, 1472, 1480, 1488, 1496, 1504, 1512, 1520, 1528, 1536, 1544, 1552, 1560, 1568, 1576, 1584, 1592, 1600, 1608, 1616, 1624, 1632, 1640, 1648, 1656, 1664, 1672, 1680, 1688, 1696, 1704, 1712, 1720, 1728, 1736, 1744, 1752, 1760, 1768, 1776, 1784, 1792, 1800, 1808, 1816, 1824, 1832, 1840, 1848, 1856, 1864, 1872, 1880, 1888, 1896, 1904, 1912, 1920, 1928, 1936, 1944, 1952, 1960, 1968, 1976, 1984, 1992, 2000, 2008, 2016, 2024, 2032, 2040, 2048, 2056, 2064, 2072, 2080, 2088, 2096, 2104, 2112, 2120, 2128, 2136, 2144, 2152, 2160, 2168, 2176, 2184, 2192, 2200, 2208, 2216, 2224, 2232, 2240, 2248, 2256, 2264, 2272, 2280, 2288, 2296, 2304, 2312, 2320, 2328, 2336, 2344, 2352, 2360, 2368, 2376, 2384, 2392, 2400, 2408, 2416, 2424, 2432, 2440, 2448, 2456, 2464, 2472, 2480, 2488, 2496, 2504, 2512, 2520, 2528, 2536, 2544, 2552, 2560, 2568, 2576, 2584, 2592, 2600, 2608, 2616, 2624, 2632, 2640, 2648, 2656, 2664, 2672, 2680, 2688, 2696, 2704, 2712, 2720, 2728, 2736, 2744, 2752, 2760, 2768, 2776, 2784, 2792, 2800, 2808, 2816, 2824, 2832, 2840, 2848, 2856, 2864, 2872, 2880, 2888, 2896, 2904, 2912, 2920, 2928, 2936, 2944, 2952, 2960, 2968, 2976, 2984, 2992, 3000, 3008, 3016, 3024, 3032, 3040, 3048, 3056, 3064, 3072, 3080, 3088, 3096, 3104, 3112, 3120, 3128, 3136, 3144, 3152, 3160, 3168, 3176, 3184, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3272, 3280, 3288, 3296, 3304, 3312, 3320, 3328, 3336, 3344, 3352, 3360, 3368, 3376, 3384, 3392, 3400, 3408, 3416, 3424, 3432, 3440, 3448, 3456, 3464, 3472, 3480, 3488, 3496, 3504, 3512, 3520, 3528, 3536, 3544, 3552, 3560, 3568, 3576, 3584, 3592, 3600, 3608, 3616, 3624, 3632, 3640, 3648, 3656, 3664, 3672, 3680, 3688, 3696, 3704, 3712, 3720, 3728, 3736, 3744, 3752, 3760, 3768, 3776, 3784, 3792, 3800, 3808, 3816, 3824, 3832, 3840, 3848, 3856, 3864, 3872, 3880, 3888, 3896, 3904, 3912, 3920, 3928, 3936, 3944, 3952, 3960, 3968, 3976, 3984, 3992, 4000, 4008, 4016, 4024, 4032, 4040, 4048, 4056, 4064, 4072, 4080, 40880, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512, 520, 528, 536, 544, 552, 560, 568, 576, 584, 592, 600, 608, 616, 624, 632, 640, 648, 656, 664, 672, 680, 688, 696, 704, 712, 720, 728, 736, 744, 752, 760, 768, 776, 784, 792, 800, 808, 816, 824, 832, 840, 848, 856, 864, 872, 880, 888, 896, 904, 912, 920, 928, 936, 944, 952, 960, 968, 976, 984, 992, 1000, 1008, 1016, 1024, 1032, 1040, 1048, 1056, 1064, 1072, 1080, 1088, 1096, 1104, 1112, 1120, 1128, 1136, 1144, 1152, 1160, 1168, 1176, 1184, 1192, 1200, 1208, 1216, 1224, 1232, 1240, 1248, 1256, 1264, 1272, 1280, 1288, 1296, 1304, 1312, 1320, 1328, 1336, 1344, 1352, 1360, 1368, 1376, 1384, 1392, 1400, 1408, 1416, 1424, 1432, 1440, 1448, 1456, 1464, 1472, 1480, 1488, 1496, 1504, 1512, 1520, 1528, 1536, 1544, 1552, 1560, 1568, 1576, 1584, 1592, 1600, 1608, 1616, 1624, 1632, 1640, 1648, 1656, 1664, 1672, 1680, 1688, 1696, 1704, 1712, 1720, 1728, 1736, 1744, 1752, 1760, 1768, 1776, 1784, 1792, 1800, 1808, 1816, 1824, 1832, 1840, 1848, 1856, 1864, 1872, 1880, 1888, 1896, 1904, 1912, 1920, 1928, 1936, 1944, 1952, 1960, 1968, 1976, 1984, 1992, 2000, 2008, 2016, 2024, 2032, 2040, 2048, 2056, 2064, 2072, 2080, 2088, 2096, 2104, 2112, 2120, 2128, 2136, 2144, 2152, 2160, 2168, 2176, 2184, 2192, 2200, 2208, 2216, 2224, 2232, 2240, 2248, 2256, 2264, 2272, 2280, 2288, 2296, 2304, 2312, 2320, 2328, 2336, 2344, 2352, 2360, 2368, 2376, 2384, 2392, 2400, 2408, 2416, 2424, 2432, 2440, 2448, 2456, 2464, 2472, 2480, 2488, 2496, 2504, 2512, 2520, 2528, 2536, 2544, 2552, 2560, 2568, 2576, 2584, 2592, 2600, 2608, 2616, 2624, 2632, 2640, 2648, 2656, 2664, 2672, 2680, 2688, 2696, 2704, 2712, 2720, 2728, 2736, 2744, 2752, 2760, 2768, 2776, 2784, 2792, 2800, 2808, 2816, 2824, 2832, 2840, 2848, 2856, 2864, 2872, 2880, 2888, 2896, 2904, 2912, 2920, 2928, 2936, 2944, 2952, 2960, 2968, 2976, 2984, 2992, 3000, 3008, 3016, 3024, 3032, 3040, 3048, 3056, 3064, 3072, 3080, 3088, 3096, 3104, 3112, 3120, 3128, 3136, 3144, 3152, 3160, 3168, 3176, 3184, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3272, 3280, 3288, 3296, 3304, 3312, 3320, 3328, 3336, 3344, 3352, 3360, 3368, 3376, 3384, 3392, 3400, 3408, 3416, 3424, 3432, 3440, 3448, 3456, 3464, 3472, 3480, 3488, 3496, 3504, 3512, 3520, 3528, 3536, 3544, 3552, 3560, 3568, 3576, 3584, 3592, 3600, 3608, 3616, 3624, 3632, 3640, 3648, 3656, 3664, 3672, 3680, 3688, 3696, 3704, 3712, 3720, 3728, 3736, 3744, 3752, 3760, 3768, 3776, 3784, 3792, 3800, 3808, 3816, 3824, 3832, 3840, 3848, 3856, 3864, 3872, 3880, 3888, 3896, 3904, 3912, 3920, 3928, 3936, 3944, 3952, 3960, 3968, 3976, 3984, 3992, 4000, 4008, 4016, 4024, 4032, 4040, 4048, 4056, 4064, 4072, 4080, 4088,-1};
int random64[] = {1964, 1366, 646, 1394, 1480, 1632, 1456, 1356, 1257, 1953, 862, 384, 2021, 1974, 45, 37, 1844, 1222, 1435, 77, 1061, 1128, 376, 160, 1198, 365, 1315, 658, 1837, 1800, 656, 239, 691, 823, 446, 355, 1870, 840, 354, 1979, 1830, 1727, 1029, 1642, 1453, 344, 2, 1343, 471, 1227, 803, 1273, 311, 1191, 1919, 1513, 1365, 536, 338, 467, 1175, 237, 1301, 1375, -1};
void setup() {
// Pick a waveform
waveform = sine20;
analogWriteResolution(12);
Timer0.attachInterrupt(wave).start(samplePeriod);
// setting time intervals is more reliable than frequency, because of integer math
// Timer1.attachInterrupt(trigger).start(20*samplePeriod);
}
void wave(){
outputValue = *(waveform + s);
if (outputValue==-1){ // wrap around and repeat the waveform
s = 0;
outputValue = *(waveform + s);
}
analogWrite(DAC0, outputValue); // write the selected waveform on DAC1
s++;
}
void trigger(){
digitalWrite(triggerPin, HIGH);
delayMicroseconds(50);
digitalWrite(triggerPin, LOW);
}
void loop(){}
view raw sine_test.ino hosted with ❤ by GitHub

Wednesday, May 7, 2014

Impedance of transmission lines

This code calculates the characteristic impedance of transmission lines of specified cross section, by calculating the electric potential through relaxation on a grid. You'll need to be able to run blitz from scipy.weave.

Here is an example of what it can do.





# Transmission line characteristic impedance
# Amar, 12 July 2012
# version 3
# All lengths in cm, E-fields in V/cm, time in ns
import pylab as plt
import numpy as np
from numpy import pi
from scipy.weave import blitz
import cPickle, time
eta0 = 376.730313461 # Ohms
"""
# Blitz test:
a,b = 1,0
print blitz("b = a+a")
"""
################### Computation grid ##########################
size = 50.0 # mm
numberOfGridBits = 10
numberOfGridPoints = 2**numberOfGridBits
dx = dy = 2*size/numberOfGridPoints
x = np.arange(-size/2.,size/2.,dx)
y = np.arange(-size/2.,size/2.,dy)
X,Y = np.meshgrid(x,y)
N = len(x)
################## Electrodes #################################
class CircularElectrode:
def __init__(self,x0,y0,D,V0,innie=True):
self.x0, self.y0, self.V0 = x0,y0,V0
self.D = D
if innie: self.mask = ( ((X-self.x0)**2 + (Y-self.y0)**2) <= self.D**2/4. )
else: self.mask = ( ((X-self.x0)**2 + (Y-self.y0)**2) >= self.D**2/4. )
#electrodes = [ CircularElectrode(0,0,.24425,V0,innie=True), CircularElectrode(0,0,.5625,0,innie=False) ] # GR900
class RectangularElectrode:
def __init__(self,x0,y0,w,h,V0,innie=True):
self.x0, self.y0, self.V0 = x0,y0,V0
self.w,self.h = w,h
if innie: self.mask = np.logical_and( np.abs(X-self.x0) <= self.w/2., np.abs(Y-self.y0) <= self.h/2. )
else: self.mask = np.logical_or( np.abs(X-self.x0) >= self.w/2., np.abs(Y-self.y0) >= self.h/2. )
# Note this subtleness between logical_and vs. logical_or for innies vs. outies
################# Calculation routine ########################
expr = "V[step:-step, step:-step] = ((V[0:-2*step, step:-step] + V[2*step:, step:-step]) + (V[step:-step,0:-2*step] + V[step:-step, 2*step:]))/4.0"
expr2 = "V = V_mask_inv*V + V_mask*V_electrode"
def calculateVoltage(electrodes, V0=1.0):
"""Calculation of voltage for an electrode configuration"""
V_electrode = np.zeros(X.shape)
for electrode in electrodes: V_electrode[electrode.mask] = electrode.V0
V_mask = sum([electrode.mask for electrode in electrodes])
V_mask_inv = np.logical_not(V_mask)
V = V_mask_inv*np.average(V_electrode) # initialized
print "Preconditioning ...",
for i in xrange(4,numberOfGridBits):
step = 2**numberOfGridBits/2**i
for j in xrange(int(5e1)):
blitz(expr, check_size=0)
blitz(expr2,check_size=0)
print "done"
step = 1.0
for i in xrange(int(4e3)):
blitz(expr, check_size=0)
blitz(expr2,check_size=0)
V_unref = V.copy()
for i in xrange(int(1e3)):
blitz(expr, check_size=0)
blitz(expr2,check_size=0)
V_ref = V.copy()
fractionalChange = np.sqrt( np.sum((V_ref - V_unref)**2)/np.sum(V_unref**2) )
# Electric field
ESquared = np.zeros(X.shape)
ESquared[1:-1, 1:-1] = ((V[2:, 1:-1] - V[0:-2, 1:-1])/(2*dx))**2 + ((V[1:-1, 2:] - V[1:-1,0:-2])/(2*dy))**2
# Characteristic impedance
Z0 = eta0/( np.sum(ESquared)*dx*dy ) * V0**2
return Z0, V, (fractionalChange, V_ref-V_unref) # characteristic impedance, Ohms
##################### Test problem #############################
V0 = 1.0
outerConductor = CircularElectrode(0,0,46.06,0,innie=False)
innerConductor = CircularElectrode(0,0,20.00,V0,innie=True)
electrodes = [ outerConductor, innerConductor ]
Z0,V,convergence = calculateVoltage(electrodes,V0)
print "Z0 = ", round(Z0,2),
print "converged to ", convergence[0]
V0 = 2.0
outerConductor = RectangularElectrode(0,0,49.6,49.6,0,innie=False)
innerConductor = RectangularElectrode(0,0,19.8,19.8,V0,innie=True)
electrodes = [ outerConductor, innerConductor ]
Z0,V,convergence = calculateVoltage(electrodes,V0)
print "Z0 = ", round(Z0,2),
print "converged to ", convergence[0]
######### Plots ##############################
# Electric field meshgrid
Ex,Ey = np.zeros(X.shape),np.zeros(X.shape)
Ex[1:-1, 1:-1] = (V[2:, 1:-1] - V[0:-2, 1:-1])/(2*dx)
Ey[1:-1, 1:-1] = (V[1:-1, 2:] - V[1:-1,0:-2])/(2*dy)
E = np.sqrt( Ex**2 + Ey**2 )
plt.figure()
plt.title(r"Voltage (V)")
plt.xlabel("x (mm)")
plt.ylabel("y (mm)")
C1 = plt.contourf(X,Y,V,30)
plt.colorbar(C1)
p.figure()
p.title(r"Electric field, \mathcal{E}_x (V/cm)")
p.xlabel("x (mm)")
p.ylabel("y (mm)")
C2 = p.contourf(X,Y,E,30)
p.colorbar(C2)
##################### Batch problem setup ######################
outerConductor = RectangularElectrode(0,0,30,50,0,innie=False)
V0 = 1.0
w = np.arange(5,25,2)
h = np.arange(1,15,2)
W,H = np.meshgrid(w,h)
Z = np.zeros(W.shape)
for i in xrange(len(w)):
for j in xrange(len(h)):
innerConductor = RectangularElectrode(0,-15,w[i],h[j],V0,innie=True)
electrodes = [ outerConductor, innerConductor ]
Z0,V,junk = calculateVoltage(electrodes)
Z[j,i] = Z0
print w[i],h[j],round(Z0)
p.figure()
p.title(r"Characteristic impedance (\Omega)")
p.xlabel("Center conductor width, w (mm)")
p.ylabel("Center conductor height, h (mm)")
C = p.contourf(W,H,Z,30)
p.colorbar(C)
p.figure()
p.title("Characteristic impedance (\Omega)\n"+"Inner conductor @ "+`(innerConductor.x0,innerConductor.y0)`)
p.xlabel("Center conductor width, w (mm)")
p.ylabel("Center conductor height, h (mm)")
C = p.contour(W,H,Z,np.arange(0,100,5), linewidth=10, colors='b')
p.clabel(C, inline=1, fontsize=12, linewidth=5)